Model Checking with Boolean Satisfiability

Joao Marques-Silva
Electronics & Computer Science
University of Southampton

University of Swansea, CS Colloquia, December 2005
Goals of this talk

- SAT algorithms and concepts
- SAT-based model checking
- Utilization of interpolants in SAT-based model checking
- Optimizations to the utilization of interpolants
Outline

- Boolean Satisfiability (SAT)
- SAT-based model checking
- Improvements to SAT-based model checking
- Results
- Conclusions
Outline

- **Boolean Satisfiability (SAT)**
 - SAT algorithms
 - Resolution refutations
 - Interpolants

- SAT-based model checking

- Improvements to SAT-based model checking

- Results

- Conclusions
CNF formulas

- Conjunctive normal form (CNF):
 - Standard representation for SAT
 - CNF formula φ is a conjunction of clauses
 - Clause is a disjunction of literals
 - Literal is a variable or its complement

$$\varphi = (a \lor b) \land (\neg a \lor c) \land (c \lor \neg d \lor \neg e) \land (\neg d \lor \neg a)$$

$$\varphi = (a \lor b) (\neg a \lor c) (c \lor \neg d \lor \neg e) (\neg d \lor \neg a)$$

- Can map propositional formulas into CNF in linear time
 - Addition of a linear number of auxiliary variables

[Tseitin’68; Plaisted&Greenbaum’86]
Given a partial assignment to the variables:

- A literal is satisfied if its value is 1; it is unsatisfied if its value is 0; otherwise it is unassigned.
- A clause is satisfied if at least one of its literals is satisfied; it is unsatisfied if all of its literals are unsatisfied; otherwise it is unresolved.
- A formula is unsatisfied if at least one clause is unsatisfied; it is satisfied if all clauses are satisfied; otherwise it is unresolved.

\[\varphi = (a \lor b) \land (\neg a \lor c) \land (c \lor \neg d \lor \neg e) \land (\neg d \lor \neg a) \]
Algorithms for SAT

- **Incomplete Algorithms** *(Cannot prove unsatisfiability)*
 - Local search (hill climbing)
 - Lagrangian multipliers
 - Genetic algorithms
 - Simulated annealing
 - Tabu search
 - ...

- **Complete Algorithms** *(Can prove unsatisfiability)*
 - Backtrack search (DPLL)
 - Resolution
 - Stalmarck’s method
 - Recursive learning
 - Binary decision diagrams (BDDs)
 - ...

- The utilization of SAT in model checking requires ability to prove unsatisfiability
 - Most SAT algorithms used in model checking are based on backtrack search
Plain backtrack search

- Given a CNF formula φ, i.e. a conjunction of clauses, implicitly enumerate all partial assignments to the variables

Increasingly specified partial assignments

- No variables assigned
- All variables assigned

- Conflict: at least one unsatisfied clause
- Solution: all clauses satisfied
Unit propagation

- **Unit clause:**
 - A clause ω is unit iff all literals but one are assigned value 0 and one literal is unassigned
 - With $a = 0$ and $b = 1$, $\omega = (a \lor \neg b \lor c)$ is unit

- **Unit clause rule:**
 - If a clause ω is unit, then unassigned literal must be assigned value 1
 - With $a = 0$ and $b = 1$, $\omega = (a \lor \neg b \lor c)$ is unit
 - Literal c must be assigned value 1 for ω to be satisfied
 - With $c = 1$, $\omega = (a \lor \neg b \lor c)$ becomes satisfied

- **Unit propagation:**
 - Iterative application of the unit clause rule
 - Imply variable assignments until no more unit clauses, or unsatisfied clause is identified
The DPLL algorithm

- **Backtrack search**
 - Implicit enumeration of all partial assignments

- **Unit propagation**
 - Iterated application of unit clause rule

- **Variable selection heuristic**
 - Policy for selecting the variable to branch on and the value to assign the variable

- **DPLL seldom used in practical applications until the mid 90s**!
Modern SAT algorithms

- Follow the organization of the DPLL algorithm [Davis et al.’62]
 - Backtrack search with unit propagation

- Several key techniques are used:
 - Clause learning [Marques-Silva&Sakallah’96]
 - Infer new clauses from causes of conflicts
 - Allows implementing non-chronological backtracking
 - Exploiting structure of conflicts [Marques-Silva&Sakallah’96]
 - Unique Implication Points (UIPs)
 - Dominators in graph of implied assignments
 - Optimised data structures [Moskewicz et al.’01]
 - Lazy evaluation of clause state
 - Adaptive branching heuristics [Moskewicz et al.’01]
 - Variable branching metrics are affected by number of conflicts
 - Aging mechanisms for focusing on most recent conflicts
 - Search restarts [Gomes,Selman&Kautz’98]
 - Opportunistically restart backtrack search
Clause learning

- During backtrack search, for each conflict learn clause that explains and prevents repetition of same conflict

\[\phi = (a \lor b)(\neg b \lor c \lor d)(\neg b \lor e)(\neg d \lor \neg e \lor f) \ldots \]

Assume (decisions) \(c = 0 \) and \(f = 0 \)

Assign \(a = 0 \) and imply assignments

A conflict is reached: \((\neg d \lor \neg e \lor f)\) is unsatisfied

\((a = 0) \land (c = 0) \land (f = 0) \Rightarrow (\phi = 0)\)

\((\phi = 1) \Rightarrow (a = 1) \lor (c = 1) \lor (f = 1)\)

\[\therefore \text{learn new clause: } (a \lor c \lor f) \]
Non-chronological backtracking

- During backtrack search, in the presence of conflicts, backtrack to one of the causes of the conflict.

\[
\varphi = (a \lor b)(\neg b \lor c \lor d)(\neg b \lor e)(\neg d \lor \neg e \lor f)
\]

\[
(a \lor c \lor f)(\neg a \lor g)(\neg g \lor b)(\neg h \lor j)(\neg i \lor k)\ldots
\]

Assume (decisions) \(c = 0, f = 0, h = 0 \) and \(i = 0 \)

Assignment \(a = 0 \) caused conflict \(\Rightarrow \) learned clause \((a \lor c \lor f) \)

\((a \lor c \lor f) \) implies \(a = 1 \)

A conflict is again reached: \((\neg d \lor \neg e \lor f) \) is unsatisfied

\((c = 0) \land (f = 0) \Rightarrow (\varphi = 0) \)

\((\varphi = 1) \Rightarrow (c = 1) \lor (f = 1) \)

\[.:. \text{learn new clause: } (c \lor f)\]
Non-chronological backtracking

Learned clause \((c \lor f)\)

Need to backtrack, given \((c \lor f)\)

Backtrack to most recent decision: \(f = 0\)

\[\therefore \text{ Clauses learned: } (a \lor c \lor f) \text{ and } (c \lor f)\]

In practice, learned clauses can allow backtracking over a significant percentage of the decision variables
Evolution of SAT solvers

- Remarkable improvements over the last decade

<table>
<thead>
<tr>
<th>Instance</th>
<th>Posit' 94</th>
<th>Grasp' 96</th>
<th>Chaff'01</th>
<th>Siege'04</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssa2670-136</td>
<td>28.53</td>
<td>0.36</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>bf1355-638</td>
<td>772.45</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>design_1</td>
<td>>7200</td>
<td>65.35</td>
<td>1.27</td>
<td>0.29</td>
</tr>
<tr>
<td>design_3</td>
<td>>7200</td>
<td>9.13</td>
<td>0.52</td>
<td>0.41</td>
</tr>
<tr>
<td>f_ind</td>
<td>>7200</td>
<td>4663.89</td>
<td>17.91</td>
<td>6.52</td>
</tr>
<tr>
<td>splitter_42</td>
<td>>7200</td>
<td>>7200</td>
<td>28.81</td>
<td>4.46</td>
</tr>
<tr>
<td>c6288</td>
<td>>7200</td>
<td>>7200</td>
<td>>7200</td>
<td>2847.46</td>
</tr>
<tr>
<td>pipe_64_32</td>
<td>>7200</td>
<td>>7200</td>
<td>>7200</td>
<td>>7200</td>
</tr>
</tbody>
</table>
Resolution

- Refutation-complete procedure for first order logic

- In propositional logic:
 - Technique for deriving new clauses
 - Example: $\omega_1 = (\neg a \lor b \lor c)$, $\omega_2 = (a \lor b \lor d)$
 - Resolution:
 \[
 \text{res}(\omega_1, \omega_2, a) = (b \lor c \lor d)
 \]
 - Forms the basis of a complete procedure for satisfiability
 - Impractical for real-world formulas
 - Application of restricted forms has been successful
 - E.g., restricted resolution
 \[
 \text{res}((\neg a \lor \alpha), (a \lor \alpha), a) = (\alpha)
 \]
 \[\alpha\] is a disjunction of literals

[Robinson’65]
[Davis&Putnam’60]
Resolution refutations

- Clause learning can be viewed as the inference of a clause by a sequence of resolution steps

\[\phi = (a \lor b)(\neg b \lor c \lor d)(\neg b \lor e)(\neg d \lor \neg e \lor f) \ldots \]

- \(a = 0 \) yields conflict; can learn \((a \lor c \lor f)\)
- By applying resolution:

\[\phi = (a \lor b)(\neg b \lor c \lor d)(\neg b \lor e)(\neg d \lor \neg e \lor f) \ldots \]
Deriving resolution refutations

- For unsatisfiable formulas:
 - Learned clauses capture a resolution refutation from a subset of the original clauses
 - SAT solvers can be instructed to recreate resolution refutation for unsatisfiable formula

\[\varphi = (a \lor b) (\neg a \lor c) (\neg b) (\neg c) \]

\[\omega_1 \quad \omega_2 \quad \omega_3 \quad \omega_4 \]

\[a = 0 \quad c = 0 (\omega_4) \]

\[b = 0 (\omega_3) \]

\[\kappa \]

\[(a \lor b) \quad (\neg a \lor c) \]

\[(b \lor c) \quad (\neg b) \]

\[(c) \quad (\neg c) \]

\[\bot \]

[Zhang&Malik'03]
Interpolants

Given two subsets of clauses A and B, assume $A \land B$ is unsatisfiable. Then, there exists an interpolant A' for the pair (A, B) with the following properties:

- A implies A'
- $A' \land B$ is unsatisfiable
- A' refers only to the common variables of A and B
- Example:
 - $A = p \land q$, $B = \neg q \land r$
 - $A' = q$

Recent result:

- Given a resolution refutation of $A \land B$, can compute interpolant for the pair (A, B) in linear time on the size of the resolution refutation
 - SAT solvers can be instructed to output resolution refutation!

Computing interpolants:

- Different algorithms can be used
 - Pudlak’97, McMillan’03

[Craig’57]

[Pudlak’97]

[McMillan’03]
Computing interpolants

\[A = (r \lor y)(\neg r \lor x) \]
\[B = (\neg y \lor a)(\neg y \lor \neg a)(\neg x) \]

- Interpolant is a Boolean circuit that follows structure of resolution refutation
 - Can map circuit into CNF in linear time and space

\[A' = y + x \]

A implies A'; A' \land B is unsatisfiable
A' with variables common to A and B

[Tseitin'68; Plaisted&Greenbaum'86]
Outline

- Boolean Satisfiability (SAT)
 - SAT-based model checking
 - Bounded model checking
 - Unbounded model checking
 - Utilization of interpolants
 - Improvements to SAT-based model checking
- Results
- Conclusions
Verification by model checking

• *Given*,
 – A model M of a system
 – A property ϕ
 Prove that M satisfies ϕ: $M \models \phi$

• Property specified using some **temporal logic**
 – Computation tree logic (CTL)
 • Discrete time, branching time
 • Often used for hardware systems
 – Other temporal logics: LTL, CTL*

• Types of properties:
 – **Safety**: Some unwanted condition will not occur
 – **Liveness**: Some expected condition will eventually take place
Representing systems

- Fundamental entities are **states**
- Dynamic behaviour captured in terms of state transitions
 - Transition relation:
 - Binary relation on the set of states S: $\rightarrow \subseteq S \times S$
 - $s \rightarrow s'$ provided the system can reach s' from s in one computation step
 - Can be represented with a characteristic function $T(s,s')$
- Atomic propositions can label each state s, $L(s)$
 - Denoting which atomic propositions are true at each state s

- Transition system (or model) $M = (S, \rightarrow, L)$:
 - Set of states: S
 - May consider a set of initial states S_0
 - Binary relation describing state transitions: \rightarrow
 - Labelling function: $L : S \rightarrow P(\text{Atoms})$
 - $L(s)$: atomic propositions that are true in state s
 - Maps S into the power set of the atoms
An example

\[S = \{ s_0, s_1, s_2 \} \]

\[\rightarrow = \{ (s_0,s_1), (s_0,s_2), (s_1, s_2), (s_1, s_0), (s_2, s_2) \} \]

\[L(s_0) = \{ p, q \} \]
\[L(s_1) = \{ q, r \} \]
\[L(s_2) = \{ r \} \]
Computation Tree Logic (CTL) [Clarke&Emerson'81]

- Propositional logic with temporal operators:
 - \(\phi := \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \rightarrow \phi) \mid A X \phi \mid E X \phi \mid A G \phi \mid E G \phi \mid A F \phi \mid E F \phi \mid A [\phi U \phi] \mid E [\phi U \phi] \)
 - Standard logical connectives
 - Temporal operators:
 - A: along all computation paths
 - E: along at least one path (exists)
 - X: next state
 - F: some future state
 - G: all future states (globally)
 - U: until
 - Adequate set of operators: \(\neg, \land, E X, A F, E U\)

- Types of properties:
 - Safety: \(A G \phi\)
 - Liveness: \(A F \phi\)
 - ...

- Can formalise semantics of CTL
CTL model checking algorithms

- **Iterative state marking**
 - Impractical for transition systems with a large number of states

- **BDD-based symbolic procedure**
 - Implicit manipulation of sets of states
 - Allowed the widespread use of CTL model checking
 - Number of state variables needs to be “small” enough

- **Utilization of SAT**
 - Scales better than BDDs
 - Difficult to manipulate sets of states

References:
- Queille & Sifakis (1981)
- Burch et al. (1990)
- Biere et al. (1999), Sheeran et al. (2000)
SAT-based model checking

- Exploit robustness of modern SAT algorithms in model checking
 - Bounded model checking (BMC)
 - Focus on safety properties \(A G p \)
 - Where \(p \) is propositional
 - Useful for finding counterexamples
 - Hence proving \(E F \neg p \)
 - Usually incomplete
 - Unbounded model checking (UMC)
 - Also focus on safety properties \(A G p \)
 - Objective is to ensure completeness
 - Either provide counterexample, or prove property
Bounded model checking

- Safety properties: \(\mathcal{E} \mathcal{F} \neg p \)

\[
\Phi^k = I_0(s_0) \land \bigwedge_{j=0}^{k-1} T(s_j, s_{j+1}) \land \left(\bigvee_{j=r}^{k} \neg p_j \right)
\]

- Characteristic functions for representing initial states and transition relation, respectively \(I_0 \) and \(T \)
 - Resulting CNF formula: \(I_0 \land U_k \land F_k \)
 - Where:
 \[
 U_k = \bigwedge_{j=0}^{k-1} C_j, \quad F_k = \left(\bigvee_{j=r}^{k} \neg p_j \right)
 \]
 - Interpretation:

[Biere et al.'99]
An example

- Property: $M, s_0 \models A G \neg q$?
- Evaluate: $M, s_0 \models E F q$
- Unroll model k time steps:

- Check satisfiability of CNF formula for $I_0 \land U_k \land F_k$
Bounded model checking

- A possible BMC algorithm:
 - Given some initial k
 - While $k \leq$ user-specified time-bound B
 - Generate CNF formula for $I_0 \land U_k \land F_k$
 - Invoke SAT solver
 - If formula is satisfiable, then a counterexample within k time steps has been found
 - Return counterexample
 - Otherwise, increase k

- The BMC algorithm is **incomplete**
 - But it is complete if recurrence diameter is known!
Towards completeness

- Unbounded model checking
 - Utilization of induction
 - Standard BMC loop
 - Stop BMC loop for some i, if cannot have loop-free path of size i that can be reached from I_0
 - All distinct states that are reachable from I_0 have been accounted for
 - Maximum unfolding bounded by largest loop-free path
 - ... [Sheeran et al.'00]

- Utilization of interpolants [McMillan'03]
 - BMC and Craig interpolants allow SAT-based computation of abstractions of reachable states
 - Avoid computing exact sets of reachable states
 - The most promising approach in practice
 - Maximum unfolding bounded by largest shortest path between any two states
Abstraction of reachable states

- For each iteration of BMC loop, call to SAT solver returns unsat until counterexample is found
 - Analysis of resolution refutation can yield abstractions of reachable states
 \[\Phi = I_0 \land C_0 \land C_1 \land \ldots \land C_{k-1} \land F_k = A \land B \]
 \[A = I_0 \land C_0 \]
 \[B = C_1 \land \ldots \land C_{k-1} \land F_k \]

- Given A and B, and a resolution refutation for \(A \land B \), compute Craig interpolant \(A' \):
 - \(A = I_0 \land C_0 \) implies \(A' \)
 - \(A' \land B \) is unsatisfiable
 - \(A' \) solely represented with state variables
 - If \(A \) holds, then \(A' \) holds
 - \(A_1 = A' \) represents abstraction of states reachable from \(I_0 \) in 1 time step!
Fixpoint of reachable states

- Can iterate computation of interpolants:

If $A_i \rightarrow I_0 \lor A_1 \lor A_2 \lor \ldots \lor A_{i-1}$, then a fixpoint is reached; all reachable states identified!
If \(F_k \) is satisfied from \(I_0 \), then we have a counterexample!

If a fixpoint of the reachable states is identified, then no reachable state can satisfy property! If \(A \land B \) is sat, may have abstracted too much; must unfold more time steps.

Maximum value of \(k \) is bounded by largest shortest path between any two states.
Outline

- Boolean Satisfiability (SAT)
- SAT-based model checking
 - Improvements to SAT-based model checking
 - Representation of interpolants
 - Rescheduling BMC & UMC loops
- Results
- Conclusions
Redundancy in interpolants

\[A = (r \lor y)(\neg r \lor x) \]

\[B = (\neg y \lor a)(\neg y \lor \neg a)(\neg x) \]

\[(r \lor y) \quad (\neg r \lor x) \]

\[(y \lor x) \quad (\neg y \lor a) \quad (\neg y \lor \neg a) \]

\[(\neg x) \quad (\neg y) \quad (x) \]

\[A' = y + x \]

Must simplify circuit to get \(A' = y + x \)
Redundancy in interpolants

- Use dedicated representation:
 - Reduced Boolean Circuits (RBCs)
 - Compact representation
 - Polynomial
 - Non-canonical
 - Quite effective in practice
 - Binary Expression Diagrams (BEDs)
 - Binary Decision Diagrams (BDDs)

[Abdulla et al.'00]
Rescheduling the UMC loop

let $k = 0$
repeat
 if from I_0 can satisfy F_k within k steps
 return reachable
 $R = I_0$
 let $A = I_0 \land C_0$, and $B = C_1 \land C_2 \land \ldots \land C_{k-1} \land F_k$
 while $A \land B = \text{false}$
 $P = \text{unsat_proof}(A \land B)$
 $A' = \text{interpolant}(P, A, B)$
 if $A' \rightarrow R$, return unreachable
 $R = A' \lor R$
 $A = A' \land C_0$
 end while
 increase k
end repeat

BMC loop
Number of iterations can be used to restrict when to call the next fixpoint check!
Rescheduling the UMC loop

Fixpoint checking with \(i \) iterations:

\[
\text{while } A \land B = \text{false} \\
P = \text{unsat_proof}(A \land B) \\
A' = \text{interpolant}(P, A, B) \\
\text{if } A' \rightarrow R, \text{ return unreachable} \\
R = A' \lor R \\
A = A' \land C_0 \\
\text{end while}
\]

\begin{align*}
I_0 & \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_i \\
\end{align*}

Checked all states reachable in up to \(k+i-1 \) states, with an unfolding of size \(k \)

\[
\therefore \text{Need to check } \textbf{fixpoint} \text{ condition } \textbf{only} \text{ when unfolding of FSM exceeds } k+i-1 \text{ time steps}
\]
Rescheduling the BMC loop

let k = 0
repeat
 if from I_0 can satisfy F_k within k steps
 return reachable
 R = I_0
 let $A = I_0 \land C_0$, and $B = C_1 \land C_2 \land \ldots \land C_{k-1} \land F_k$
 while $A \land B = \text{false}$
 $P = \text{unsat_proof}(A \land B)$
 $A' = \text{interpolant}(P, A, B)$
 if $A' \rightarrow R$, return unreachable
 $R = A' \lor R$
 $A = A' \land C_0$
 end while
 increase k
end repeat

BMC loop

Number of iterations can also be used to restrict when to check the BMC condition!

Fixpoint
Rescheduling the BMC loop

while $A \land B = false$

$P = \text{unsat_proof}(A \land B)$

$A' = \text{interpolant}(P, A, B)$

if $A' \rightarrow R$, return unreachable

$R = A' \lor R$

$A = A' \land C_0$

end while

Fixpoint checking with i iterations:

$I_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_i$

Checked all states reachable in up to $k+i-1$ states, with an unfolding of size k

\therefore Need to check BMC condition only when unfolding of FSM exceeds $k+i-1$ time steps
Outline

- Boolean Satisfiability (SAT)
- SAT-based model checking
- Improvements to SAT-based model checking

- Results
- Conclusions
Our model checker MCSAT

- SAT-based model checker for safety properties

- Bounded model checking
 - Tight integration with SAT solver (CQuest, ...)
 - Incremental generation of CNF formula
 - Reutilization and replication of learned clauses

- Unbounded model checking
 - Utilization of interpolants
 - Additional improvements
 - Fast algorithms for computing interpolants
 - Rescheduling fixpoint checking and BMC loop given feedback from checking existence of a fixpoint
Experimental results

- Evaluated optimizations on set of examples
 - Specifically designed and industrial examples
- Evaluated both the plain UMC algorithm and the proposed optimizations

<table>
<thead>
<tr>
<th>Instance</th>
<th>No-reschedule</th>
<th>Reschedule BMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-bit counter</td>
<td>0.31</td>
<td>0.09</td>
</tr>
<tr>
<td>5-bit counter</td>
<td>3.86</td>
<td>0.84</td>
</tr>
<tr>
<td>6-bit counter</td>
<td>21.36</td>
<td>10.41</td>
</tr>
<tr>
<td>7-bit counter</td>
<td>1780.68</td>
<td>175.69</td>
</tr>
<tr>
<td>I12</td>
<td>255.77</td>
<td>272.47</td>
</tr>
<tr>
<td>I11</td>
<td>75.28</td>
<td>81.89</td>
</tr>
<tr>
<td>I31</td>
<td>83.51</td>
<td>90.08</td>
</tr>
<tr>
<td>I32</td>
<td>19.66</td>
<td>14.89</td>
</tr>
<tr>
<td>I33</td>
<td>17.44</td>
<td>13.09</td>
</tr>
<tr>
<td>I21</td>
<td>24.93</td>
<td>26.48</td>
</tr>
<tr>
<td>Total time</td>
<td>2282.8</td>
<td>685.9</td>
</tr>
</tbody>
</table>
Conclusions

- SAT technology has improved dramatically over the last decade
 - Key techniques:
 - Clause learning, optimised data structures, adaptive branching heuristics

- SAT has been applied to CTL model checking with success
 - Bounded and unbounded model checking

- Described optimizations to the utilization of interpolants in SAT-based model checking

- Results promising, but for specific instances
 - Rescheduling can allow number of iterations to be significantly reduced
Deriving resolution refutations

- For unsatisfiable formulas:
 - Learned clauses capture a resolution refutation from a subset of the original clauses
 - SAT solvers can be instructed to recreate resolution refutation for unsatisfiable formula

\[\varphi = (a \lor b) (\neg a \lor c) (\neg b) (\neg c) \]

\(\omega_1 \quad \omega_2 \quad \omega_3 \quad \omega_4 \)

\[a = 0 \quad b = 0 \quad c = 0 \]

\(\kappa \quad \omega_1 \quad \omega_2 \quad \omega_1 \quad \omega_1 \quad \omega_3 \quad \omega_4 \)

\[\neg c \quad \neg b \quad c \quad (b \lor c) \quad (a \lor b) \quad (\neg a \lor c) \]

\[\bot \]

[Zhang&Malik’03]
Bounded model checking

- **Given a bound** \(k \)
 - Number of computation steps, clock cycles, etc.

- **And a representation of the initial states**
 - \(I_0 \) is the characteristic function for the set of initial states
 - \(I_0(s) = 1 \) iff \(s \) is an initial state

- **Unroll the transition relation for** \(k \) **computation steps:**
 \[
 U_k = \bigwedge_{i=0}^{k-1} C_i
 \]

Where,
- \(C_i \) is the characteristic function for the \(i^{th} \) replica of the transition relation: \(s \rightarrow s' \)
 - \(C_i(s, s') = 1 \) iff \(s \rightarrow s' \)

[Biere et al.'99]
Bounded model checking

- Unroll the (safety) temporal property k computation steps, F_k
 - Property describes a condition that should not hold in any of the k computation steps

- Form the conjunction of the initial states condition, the unrolled transition relation, and the property:
 - $I_0 \land U_k \land F_k$

- Create instance of SAT for $I_0 \land U_k \land F_k$
 - E.g. apply Tseitin’s transformation to create a CNF formula

- Solve with SAT solver
Computing interpolants

- **Plain solution**
 - Trace learned clauses
 - Keep dependencies of each learned clause
 - Construct resolution proof
 - Generate interpolant

- **Optimised solution**
 - Generate interpolant directly from the trace, and skip the generation of the resolution proof
 - Interpolants are highly redundant Boolean expressions and can be extensively simplified
 - Simplify sub-expressions as early as possible
 - Visit clause dependencies depth-first (instead of breadth-first)
 - More suitable for early simplification of sub-expressions of the interpolant
 - Problem: must keep proof trace in memory