Interpolant Learning and Reuse in SAT-Based Model Checking

Joao Marques-Silva
Electronics & Computer Science
University of Southampton

BMC Workshop, FLoC, Seattle, August 2006
Motivation

- Remarkable improvements made to SAT solvers over the last decade
 - Clause learning; lazy data structures; adaptive branching heuristics; search restarts

- Very successful application of SAT in model checking
 - Bounded and unbounded model checking

- Existing (industry motivated) challenges
 - Ability to handle ever increasing systems
 - Ability to find deep counterexamples
 - Ability to prove difficult properties

- Lines of research
 - More efficient SAT solvers (?)
 - Better uses of SAT technology in SAT-based model checking
Goals of this talk

- SAT & SAT-based model checking
- Interpolants in SAT-based model checking
- Conditions for interpolant learning and reuse
Outline

- SAT & SAT-based model checking
 - Organization of a modern SAT solver
 - SAT-based bounded model checking (BMC)
 - Interpolant-based unbounded model checking (UMC)

- Improvements to SAT-based model checking

- Results & conclusions
Modern SAT algorithms

- Follow the organization of the DPLL algorithm
 - Backtrack search with unit propagation

- Several key techniques are used:
 - Clause learning \[\text{[Marques-Silva&Sakallah’96]}\]
 - Infer new clauses from causes of conflicts
 - Allows implementing non-chronological backtracking

 - Exploiting structure of conflicts \[\text{[Marques-Silva&Sakallah’96]}\]
 - Identify Unique Implication Points (UIPs)
 - Dominators in graph of implied assignments

 - Optimized data structures \[\text{[Moskewicz et al.’01]}\]
 - Lazy evaluation of clause state

 - Adaptive branching heuristics \[\text{[Moskewicz et al.’01]}\]
 - Variable branching metrics are affected by number of conflicts
 - Aging mechanisms for focusing on most recent conflicts

 - Search restarts \[\text{[Gomes,Selman&Kautz’98]}\]
 - Opportunistically restart backtrack search
Bounded model checking

- Verification of safety properties: \(F \varphi \)

 \[
 \Phi^k = I_0(Y_0) \land \bigwedge_{i=0}^{k-1} T(Y_i, Y_{i+1}) \land \bigvee_{i=r}^k f(Y_i)
 \]

- Characteristic functions for representing initial states and transition relation, respectively \(I_0 \) and \(T \)
 - Resulting Boolean formula: \(\Phi^k = I_0 \land U_k \land F_k \)
 - Where:
 \[
 U_k = \bigwedge_{j=0}^{k-1} T_j \\
 T_i = T(Y_i, Y_{i+1}) \\
 F_k = \left(\bigvee_{i=r}^k f_i \right) \\
 f_i = f(Y_i)
 \]
 - Interpretation:

\[\begin{array}{ccccccc}
I_0 & Y_0 & T_0 & Y_1 & T_1 & \ldots & T_{k-1} & Y_k & F_k
\end{array}\]
Bounded model checking

• A possible BMC algorithm:
 – Given some initial k
 – While $k \leq$ user-specified time-bound UB
 • Generate CNF formula φ for $I_0 \land U_k \land F_k$
 • Invoke SAT solver on φ
 • If formula φ is satisfiable, then a counterexample within k time steps has been found
 – Return counterexample
 • Otherwise, increase k

• The BMC algorithm is incomplete
 – But complete if completeness threshold is known
Towards completeness

- Unbounded model checking
 - Utilization of induction
 - Standard BMC loop
 - Stop BMC loop for some i, if cannot have loop-free path of size i that can be reached from I_0 or if cannot have loop-free path of size i that can reach F_k
 - Maximum unfolding bounded by largest loop-free path
 - ...

- Utilization of interpolants
 - BMC and Craig interpolants allow SAT-based computation of abstractions of reachable states
 - Avoid computing exact sets of reachable states
 - One of the most promising approaches in practice
 - Maximum unfolding bounded by largest shortest path between any two states

[Sheeran et al.'00]
[Chauhan et al.'02; Gupta et al.'03]
[McMillan'03]
Interpolants

Given two subsets of clauses A and B, assume $A \land B$ is unsatisfiable. Then, there exists an interpolant A' for the pair (A, B) with the following properties:

- A implies A'
- $A' \land B$ is unsatisfiable
- A' refers only to the common variables of A and B
- Example:
 - $A = p \land q$, $B = \neg q \land r$
 - $A' = q$

Size of interpolants:

- Given a resolution refutation of $A \land B$, can compute interpolant for the pair (A, B) in linear time on the size of the resolution refutation
 - SAT solvers can be instructed to output resolution refutation!

Computing interpolants:

- Different algorithms can be used
 - Pudlak’97, McMillan’03
Deriving resolution refutations

- For unsatisfiable formulas:
 - Learned clauses capture a resolution refutation from a subset of the original clauses
 - SAT solvers can be instructed to recreate resolution refutation for unsatisfiable formula

\[\varphi = (a \lor b) \land (\neg a \lor c) \land (\neg b) \land (\neg c) \]

\[\omega_1 \quad \omega_2 \quad \omega_3 \quad \omega_4 \]

\[\kappa \]

\[\omega_1 \quad \omega_2 \quad \omega_3 \quad \omega_4 \]

\[\begin{align*}
\omega_1 \hspace{1cm} a &= 0 \\
\omega_2 \hspace{1cm} b &= 0 (\omega_3) \\
\omega_3 \hspace{1cm} c &= 0 (\omega_4) \\
\omega_4 \hspace{1cm} (a \lor b) \land (\neg a \lor c) \land (\neg b) \land (\neg c) \\
\end{align*} \]

\[(b \lor c) \quad (\neg b) \quad (c) \quad (\neg c) \]

\[\bot \]
Computing interpolants

$A = (r \lor y)(\neg r \lor x)$

$B = (\neg y \lor a)(\neg y \lor \neg a)(\neg x)$

- Interpolant is a Boolean circuit that follows structure of resolution refutation
 - Can map circuit into CNF in linear time and space

$A' = y + x$

A implies A'; $A' \land B$ is unsatisfiable

A' with variables common to A and B
Abstraction of reachable states

- For each iteration of BMC loop, call to SAT solver returns unsat unless counterexample is found
 - Analysis of resolution refutation yields abstractions of reachable states
 \[\Phi = I_0 \land T_0 \land T_1 \land \square \land T_{k-1} \land F_k = A \land B \]
 \[A = I_0 \land T_0 \]
 \[B = T_1 \land \square \land T_{k-1} \land F_k \]

- Given A and B, and a resolution refutation for \(A \land B \), compute Craig interpolant \(A' \):
 - A = \(I_0 \land T_0 \) implies \(A' \)
 - \(A' \land B \) is unsatisfiable
 - \(A' \) solely represented with state variables
 - If A holds, then \(A' \) holds
 - \(A_1 = A' \) represents abstraction of states reachable from \(I_0 \) in 1 time step!
Fixpoint of reachable states

- Can iterate computation of interpolants:

If $A_i \rightarrow I_0 \lor A_1 \lor A_2 \lor \ldots \lor A_{i-1}$, then a fixpoint is reached; all reachable states identified!
If F_k is satisfied from I_0, then we have a counterexample!

If a fixpoint of the reachable states is identified, then no reachable state can satisfy property!

If $A \land B$ is sat, may have abstracted too much; must unfold more time steps

Maximum value of k is bounded by largest shortest path between any two states

UMC algorithm

$k = 0$

repeat

if from I_0 can satisfy F_k within k steps

return reachable

$R = I_0$

let $A = I_0 \cup T_0$, and $B = T_1 \cup T_2 \cup \ldots \cup T_{k-1} \cup F_k$

while $A \cup B = \text{false}$

$P = \text{unsat_proof}(A \cup B)$

$A' = \text{interpolant}(P, A, B)$

if $A' \rightarrow R$, return unreachable

$R = A' \cup R$

$A = A' \cup T_0$

end while

increase k

end repeat

BMC loop
Outline

- SAT & SAT-based model checking

- Conditions for interpolant reuse
 - Interpolants readily available if fixed point condition is based on interpolants
 - Can envision alternative fixpoint conditions

- Results & conclusions
Interpolant reuse

- Boolean formula N is usable for B iff $B \rightarrow N$
 - B satisfiable iff $B \land N$ satisfiable

- Learnt interpolants can be **reused**
 - For requiring states from a set of states
 - For preventing states from a set of states

- A different organization of BMC:
 \[U_k = \bigwedge_{i=0}^{k-1} T_i \]
 \[F_k = \bigvee_{i=k}^{k} f_i \]

[Copty et al.’01]
Interpolant reuse

- Different ways for computing interpolants
 - Computed interpolants can be direct or inverse
 - Interpolants can be computed at different time steps

![Diagram]

- Direct interpolants
 - Over-approximation of reachable states
 - Under-approximation of states that do not satisfy failing property

- Inverse interpolants
 - Under-approximation of unreachable states
 - Over-approximation of states that satisfy failing property
Direct interpolants

- $P_{r,t}$:
 - Direct interpolant computed r time steps from I_0 and t time steps to F_k

- From the initial state, $P_{r,t}$, $t=k-r$:
 \[
 \Phi = I_0 \land T_0 \land T_1 \land \Box \land T_{k-1} \land F_k = A \land B \\
 B = T_r \land \Box \land T_{k-1} \land F_k \\
 A = I_0 \land T_1 \land \Box \land T_{r-1}
 \]

- In general, $P_{r+u,t}$:
 \[
 \Phi = P_{u,v} \land T_0 \land T_1 \land \Box \land T_{k-1} \land F_k = A \land B \\
 B = T_r \land \Box \land T_{k-1} \land F_k \\
 A = P_{u,v} \land T_1 \land \Box \land T_{r-1}
 \]
Conditions for interpolant reuse I

● Conditions on direct interpolants:

 – \(P_{r,t}(Y_r) \) is usable for \(\Phi^k \), with \(t \geq 0 \) and \(r \leq k \)

 – \(\neg P_{r,t}(Y_{k-t}) \) is usable for \(\Phi^k \), with \(r \geq 0 \) and \(t \leq k \)

\[
\begin{align*}
I_0 & \quad T_0 & \quad T_{r-1} & \quad T_r & \quad T_{k-t-1} & \quad T_{k-t} & \quad T_{k-1} & \quad F_k \\
\quad & & & \quad P_{r,t} & & \neg P_{r,t} & & \quad
\end{align*}
\]
An example I

- Standard UMC model checking, with BMC and fixpoint loops
- Automaton with unfolding of size $k+1$

\[
\begin{array}{c}
I_0 \quad Y_0 \quad T_0 \quad Y_1 \quad T_1 \quad \ldots \quad T_k \quad Y_{k+1} \quad F_{k+1}
\end{array}
\]

- Fixed point checking for $j+1$ iterations
 - Last iteration yields spurious counterexample; j interpolants computed
- Interpolants computed at Y_1:
 - $P_{1,k}$, $P_{2,k}$, ..., $P_{j,k}$
- Examples of interpolant reuse:
 - $P_{i,k}(Y_i)$, $1 \leq i \leq j$, is usable for Φ^m, $m \geq k$
 - $P_{i,k}$ represents over-approximation of the states reachable in i time steps
 - With unfolding of size $k+1$, $\neg P_{i,k}(Y_1)$, $1 \leq i \leq j$, is usable for Φ^{k+1}
 - $P_{i,k}$ represents under-approximation of the states that do not satisfy failing property in k time steps
 - With unfolding of size $m \geq k$, $\neg P_{i,k}(Y_{m-k})$, $1 \leq i \leq j$, is usable for Φ^m
Inverse interpolants

- \(Q_{r,t} \):
 - Reverse interpolant computed \(r \) time steps from \(I_0 \) and \(t \) time steps to \(F_k \)

- From the initial state, \(Q_{r,t}, t=k-r \):
 \[
 \Phi = I_0 \land T_0 \land T_1 \land \cdots \land T_{k-1} \land F_k = A \land B \\
 A = T_r \land \cdots \land T_{k-1} \land F_k \\
 B = I_0 \land T_1 \land \cdots \land T_{r-1}
 \]

- In general, \(Q_{r+u,t} \):
 \[
 \Phi = P_{u,v} \land T_0 \land T_1 \land \cdots \land T_{k-1} \land F_k = A \land B \\
 A = T_r \land \cdots \land T_{k-1} \land F_k \\
 B = P_{u,v} \land T_1 \land \cdots \land T_{r-1}
 \]
Conditions for interpolant reuse II

- **Conditions on inverse interpolants:**
 - $Q_{r,t}(Y_{k-t})$ is usable for Φ^k, with $r \geq 0$ and $t \leq k$
 - $\neg Q_{r,t}(Y_r)$ is usable for Φ^k, with $t \geq 0$ and $r \leq k$
An example II

- Standard UMC model checking, with BMC and fixpoint loops
- Automaton with unfolding of size k+1

\[\text{I}_0 \xrightarrow{Y_0} \text{T}_0 \xrightarrow{Y_1} \text{T}_1 \xrightarrow{\ldots} \text{T}_k \xrightarrow{Y_{k+1}} \text{F}_{k+1} \]

- Fixed point checking for j+1 iterations
 - Last iteration yields spurious counterexample; j interpolants computed
- Interpolants computed at Y_1:
 - $Q_{1,k}$, $Q_{2,k}$, ..., $Q_{j,k}$
- Examples of interpolant reuse:
 - $\neg Q_{i,k}(Y_i), 1 \leq i \leq j$, is usable for Φ^m, $m \geq k$
 - $Q_{i,k}$ represents under-approximation of the states unreachable in i time steps
 - With unfolding of size k+1, $Q_{i,k}(Y_1), 1 \leq i \leq j$, is usable for Φ^{k+1}
 - $Q_{i,k}$ represents over-approximation of the states that satisfy failing property in k time steps
 - With unfolding of size $m \geq k$, $Q_{i,k}(Y_{m-k}), 1 \leq i \leq j$, is usable for Φ^m
More on interpolant reuse

- All interpolants computed in standard interpolant-based UMC flow can be reused
 - Easy to integrate with existing interpolant-based UMC flow

- Learning and reusing of interpolants can be integrated into any approach for BMC or UMC
 - Plain BMC algorithm
 - Different approaches for UMC

- Inverse interpolants provide alternative fixpoint condition (from previous slide):
 - If $Q_{k,i} \rightarrow F_{k+1} \lor Q_{k,1} \lor \ldots \lor Q_{k,i-1}$ is satisfiable, then we have a fixpoint
Outline

- SAT & SAT-based model checking
- Improvements to SAT-based model checking
- Results & conclusions
Experience with reuse

- Experimented interpolant reuse on artificial and industrial benchmarks
 - Plain (incomplete) BMC loop
 - Direct interpolants computed at each step (at the last time step)
 - Interpolants not used for checking fixed point condition

- Experience so far:
 - CPU times increase with interpolant reuse

- The problems observed:
 - Large interpolants
 - Naive simplifications
 - Computed solely for search pruning purposes
 - Ineffective representation
 - One Reduced Boolean Circuit (RBC) for each interpolant
Results

<table>
<thead>
<tr>
<th>Instance</th>
<th>W/o Interpolants</th>
<th>W/ Interpolants</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-bit counter</td>
<td>1.51</td>
<td>5.29</td>
</tr>
<tr>
<td>7-bit counter</td>
<td>16.38</td>
<td>61.03</td>
</tr>
<tr>
<td>8-bit counter</td>
<td>236.90</td>
<td>784.81</td>
</tr>
<tr>
<td>(I_1)</td>
<td>7.08</td>
<td>7.11</td>
</tr>
<tr>
<td>(I_2)</td>
<td>31.36</td>
<td>36.96</td>
</tr>
<tr>
<td>(I_3)</td>
<td>38.36</td>
<td>60.60</td>
</tr>
<tr>
<td>(I_4)</td>
<td>52.45</td>
<td>58.25</td>
</tr>
<tr>
<td>(I_5)</td>
<td>150.54</td>
<td>157.81</td>
</tr>
</tbody>
</table>
Conclusions

- SAT technology has improved dramatically over the last decade
 - Key techniques:
 - Clause learning, optimized data structures, adaptive branching heuristics, search restarts

- SAT has been applied to model checking with success
 - Bounded and unbounded model checking

- Described conditions for interpolant reuse in SAT-based model checking

- Results preliminary
 - Reuse of interpolants increases run times
A few challenges

- Can interpolant reuse yield performance gains?
 - E.g., Negative direct interpolants OR Positive inverse interpolants

- Can we find “good” interpolants to learn and reuse?
 - E.g. size/depth of interpolant (or size of CNF representation)
An example III

- **Inverse** UMC model checking, with BMC and fixpoint loops
- Automaton with unfolding of size \(k+1\)

\[
\begin{array}{c}
I_0 & Y_0 & T_0 & Y_1 & T_1 & \cdots & T_k & Y_{k+1} & F_{k+1}
\end{array}
\]

- Fixed point checking for \(j+1\) iterations
 - Last iteration yields spurious counterexample; \(j\) interpolants computed
- Interpolants computed at \(Y_{k-1}\):
 - \(Q_{k,1}, Q_{k,2}, \ldots, Q_{k,j}\)
- Examples of interpolant reuse:
 - \(\neg Q_{k,i}(Y_k), 1 \leq i \leq j,\) is usable for \(\Phi^m, m \geq k\)
 - \(Q_{k,i}\) represents under-approximation of the states unreachable in \(k\) time steps
 - With unfolding of size \(k+1\), \(Q_{k,i}(Y_{k+1-i}), 1 \leq i \leq j,\) is usable for \(\Phi^{k+1}\)
 - \(Q_{k,i}\) represents over-approximation of the states that satisfy failing property in \(i\) time steps
 - With unfolding of size \(m \geq k\), \(Q_{k,i}(Y_{m-i}), 1 \leq i \leq j,\) is usable for \(\Phi^m\)